Loading...
Loading...
Browse all stories on DeepNewz
VisitFirst publication venue for follow-up paper on new LLM retrieval method by end of 2024
Nature • 25%
Science • 25%
arXiv • 25%
NeurIPS • 25%
Academic publication records
New Method Enhances LLM Long-Context Retrieval Capabilities with Synthetic Key-Value Data Finetuning
Jun 28, 2024, 05:16 PM
A recent research paper titled 'From Artificial Needles to Real Haystacks: Improving Retrieval Capabilities in LLMs by Finetuning on Synthetic Data' proposes a novel method to enhance the retrieval and reasoning capabilities of large language models (LLMs). The approach involves finetuning LLMs on synthetic numerical key-value retrieval tasks. This method aims to improve the performance of LLMs in handling long-context retrieval tasks. The project, led by researchers Zheyang Xiong and Vasilis Papageorgiou, demonstrates that finetuning on randomly generated artificial key-value retrieval tasks significantly enhances the accuracy and reasoning capabilities of LLMs in real-world scenarios. The fine-tuning dataset comprises numerical dictionary tasks.
View original story
Yes • 50%
No • 50%
Yes • 50%
No • 50%
Astronomy & Astrophysics • 25%
The Astrophysical Journal • 25%
Nature Astronomy • 25%
Other • 25%
Nature • 25%
Science • 25%
Astrophysical Journal • 25%
Other • 25%
NeurIPS • 25%
ICML • 25%
AAAI • 25%
Other • 25%
Yes • 50%
No • 50%
Google DeepMind • 25%
OpenAI • 25%
Microsoft • 25%
Other • 25%
Natural Language Processing • 25%
Computer Vision • 25%
Biomedical Research • 25%
Other • 25%
Nature • 25%
Science • 25%
Cell • 25%
Other • 25%
Nature • 25%
Science • 25%
Journal of Machine Learning Research • 25%
Other • 25%
Stanford University • 33%
Washington University • 33%
Google DeepMind • 34%
OpenAI • 25%
Meta AI • 25%
Microsoft • 25%
Google DeepMind • 25%